
LLNL-PRES-813866
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lessons Learned in the Sierra Center of Excellence
Migrating to Heterogenous Computing

David Richards, Ian Karlin, Rob Neely

Sept 2, 2020

2
LLNL-PRES-813866

Acknowledgements - This talk builds on the work of many

Thank you to co-authors, code teams, support staff, COE Vendors,
and everyone else who has helped to make Sierra a success

Johann Dahm
Aaron Black
Adam Bertsch
Leoplod Grinberg
Ian Karlin
Sara Kokkila-Schumacher
Edgar Leon
Rob Neely
Ramesh Pankajakshan
Olga Pearce
Brian Ryujin

Jason Burmark
Brian Pudliner
Adam Kunen
David Dawson
Rich Hornung
David Beckingsale
Peter Robinson
Tom Scogland
Holger Jones
David Poliakoff
Jim Glosli

Bert Still
Katie Lewis
Bruce Hendrickson
Matt Cordery
David Appelhans
Steve Rennich
Max Katz

And Many Others…

3
LLNL-PRES-813866

§ Established joint work plans, information
sharing, and collaboration mechanisms

§ Dedicated vendor staff worked alongside
lab code teams
— Some staff assigned to work at lab sites

§ Labs provided access to our codes
— Including classified codes for those with

security clearance

§ Vendors provided NDA information and
early access to hardware and software

The Sierra Center of Excellence was a close partnership between
the NNSA, IBM, and Nvidia

Forming a Center of Excellence has become a recognized best practice for large DOE system procurements

4
LLNL-PRES-813866

Sierra is LLNL’s first heterogeneous HPC system

Mellanox Interconnect
• Single Plane EDR InfiniBand
• 2 to 1 Tapered Fat Tree

IBM POWER9
• Gen2 NVLink

NVIDIA Volta
• 7 TFlop/s
• HBM2
• Gen2 NVLink

Components

Compute Node
2 IBM POWER9 CPUs
4 NVIDIA Volta GPUs
NVMe-compatible PCIe 1.6 TB SSD
256 GiB DDR4
16 GiB Globally addressable HBM2

associated with each GPU
Coherent Shared Memory

GPFS File System

154 PB usable storage
1.54 TB/s R/W bandwidth

Compute Rack
Standard 19”
Warm water cooling

Compute System
4320 nodes

1.29 PB Memory
240 Compute Racks

125 PFLOPS
~11 MW

5
LLNL-PRES-813866

Recently announced DOE systems clearly show we have now
entered the heterogeneous era

Perlmutter NERSC, 2020
AMD CPU, Nvidia Tesla GPU

Aurora Argonne, 2021
Intel CPU, Intel Xe GPU, > 1 ExaFlop

Frontier ORNL, 2021
AMD CPU, AMD GPU, 1.5 ExaFlop

El Capitan LLNL, 2022
AMD CPU, AMD GPU, > 1.5 ExaFlop

6
LLNL-PRES-813866

Our switch to GPU-based computing is paying off with big
performance increases

Ares, RT Mixing
13x speedup

ALE3D, Shaped Charge
8x speedup

Ardra, Reactor Safety
16x speedup

Kull/Teton
Radiating Sphere

7x speedup

SW4, Hayward Fault, 28x speedup

7
LLNL-PRES-813866

§ Millions of lines of code in multiple
programming languages

§ Scale to O(1M) MPI ranks
§ Multiple spatial/temporal scales
§ Maintain connection to prior V&V efforts
§ Coordinate with 10-60+ libraries

§ Long life-time projects
— 15+ years of development by large teams
— 10–20+ people, ~50/50 CS/Physicists

§ Portable performance
— Our codes must be fast, reliable, and accurate on

multiple systems
— Laptops, Workstations, Commodity Clusters, Advanced

Architectures, Heterogenous Architectures

Large, integrated multi-physics codes provide simulation capabilities for a
broad range of application domains

Inertial Confinement Fusion HE Cookoff Navy Railguns Additive ManufacturingFracture and Failure

Our codes are specifically tailored to our mission space and HPC capabilities presenting unique challenges

8
LLNL-PRES-813866

Successful application modernization follows a consistent pattern

LOOP TAXONOMY RAJA API RAJA API V2

GPU BRANCH START

CUDA 8

1ST GPU RUN
FIRST MAJOR

PHYSICS PACKAGE

GLOBAL
VAR

REMOVAL

MULTIPLE GPUS

MATERIAL
EOS

SINGLE PHYSICS RUN
SINGLE PHYSICS RUN

CONTACT PHYSICS

CPU + GPU
SIMULTANEOUS

BASIC RESTARTS

MASS RAJA-
FICATION

MORE PHYSICS

MORE PHYSICS

MORE PHYSICS

LARGE MULTPHYSICS
RUNS

3 M
ar
3 A

pr
3 M

ay
3 J

un
3 J

ul
3 A

ug
3 S

ep
3 O

ct
3 N

ov
3 D

ec
3 J

an
3 F

eb
3 M

ar
3 A

pr
3 M

ay
3 J

un
3 J

ul
3 A

ug
3 S

ep
3 O

ct
3 N

ov
3 D

ec
3 J

an
3 F

eb
3 M

ar
3 A

pr
3 M

ay
3 J

un
3 J

ul
3 A

ug
3 S

ep
3 O

ct
3 N

ov
3 D

ec
3 J

an

Infrastructure
Team Coding Event
Physics Capability
Run Milestone

2016 2017 ‘18

Preparation of code base
First

GPU runs Incremental improvements

2015

1. Refactor and remove anti-patterns

2. Create a mini-app to explore design space

3. Use portable abstractions and frameworks

4. Focus on a specific use case

5. Search for additional parallelism

6. Manually manage memory

7. Iteratively apply the steps above

9
LLNL-PRES-813866

Proxy apps are extremely useful to explore design and
refactoring choices as well as performance bottlenecks

Proxy apps are also useful for benchmarking and vendor co-design

0

10

20

30

40

50

60

70

Power 8 KNL Power 8 KNL Pascal GPU

Tr
ac

ki
ng

 T
im

e
(s

ec
on

ds
)

Quicksilver tracking loop times
(weak scaling, lower is better)

1 Node 2 Nodes 4 Nodes

Compiler Bug in Atomics

Fat Threads Thin Threads

Testing thread strategies for Mercury

Problem: Communication is expensive on Sierra

Distributed simulation:
I Each GPU simulates a subdomain
I Boundary info (small, disjoint) is frequently exchanged with neighboring processes

I GPU memory to GPU
memory

I < 5% of runtime on CPU
only machines

Comb benchmark explores data
packing and transfer options

Sm Md Lg
0

10

20

30

%
Si

m
ul

at
io

n
tim

e

Pack Sync Comm

LLNL-PRES-785917 Slide 2 Messaging time breakdown for
various job sizes on Sierra.

Comb represents the data packing and
communication for the halo exchange in Ares

10
LLNL-PRES-813866

§ Decouple loop traversal and iterate (body)
§ An iterate is a “task” (aggregate, (re)order, …)
§ IndexSet and execution policy abstractions

simplify exploration of implementation/tuning
options without disrupting source code

RAJA is our performance-portability solution that uses standard C++ idioms to target
multiple back-end programming models

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;

for (int i = begin; i < end; ++i) {
y[i] += a * x[i] ;
tsum += y[i] ;
if (y[i] < tmin) tmin = y[i];

}

C-style for-loop

Execution Policy
(how loop runs: PM backend, etc.)

Index
(index sets, segments to

partition, order, …. iterations)

Pattern
(forall, reduction, scan, etc.)

RAJA-style loop
double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (index_set , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

RAJA allows us to write-once, target multiple back-ends

11
LLNL-PRES-813866

Kripke was an essential tool to explore design patterns for Arda
and co-design RAJA

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

1.40E-07

0.00E+00 5.00E+07 1.00E+08

G
rin

d
Ti

m
e

(S
ec

on
ds

/U
nk

no
w

n)

Number of Unknowns

Grind Time for DGZ
LTimes Kernel in Kripke

collapse(2)

omp_seq

pa r_collapse (2)

pa r_omp_seq

pa r_ tile256_omp_seq

pa r_ tile512_omp_seq

Exploring execution policies for Ardra

RAJA::View vview(v_ptr,
make_perm_layout(ni,nj));

//...

RAJA::forallN< exec_policy, INDX, JNDX >(
RangeSegment(1, ni),
RangeSegment(0, nj),
[=](INDX i, JNDX j) {

vview(0, j) += vview(i, j);

});

RAJA style nested for-loop

The RAJA nested loop abstraction
generates optimal loop ordering for

any runtime parameters

13
LLNL-PRES-813866

No single strategy: multiple paths to success have emerged
§ SW4: Allow managed memory to handle transfers. Overhead amortized by much re-use

between transfers.
§ Ares: Data transfers are explicit for performance. Managed memory pointers are helpful for

libraries and code simplicity.
§ Teton: All data transfers are explicit.

Abstractions improve code performance and developer productivity
§ CHAI: Smart pointers automate explicit data transfers (Ardra, ALE3D)
§ Umpire:

— Unified, portable API to 3rd party memory capabilities
— Coordinates memory use/introspection among multiple packages
— Provides memory pools etc. to improve performance

Unified (coherent) memory is helpful, but is not a panacea

Host-device data transfers must be treated as first class concerns

14
LLNL-PRES-813866

Phase 0
§ Initial state of problem staged in CPU memory

Phase 1
§ A executes first
§ A allocates temporary data in a memory pool (T)
§ A’s data is copied to GPU

Phase 2
§ A’s data copied back to CPU

— Some shared data remains on the GPU
§ B’s data copied to GPU
§ Temporary data T deallocated
§ B allocates temporary data T’ using the same

memory pool

Umpire is being developed to coordinate complex memory
allocations and movement

B

C

AA

B

T’

CPU GPU

B

C

A

B

C A

TA

Assume three packages/libraries A,B,C – each with their own view of the GPU memory resources

15
LLNL-PRES-813866

Performance improvement is an iterative process. Each step
improves performance but also uncovers the next problem

This result required sustained effort over long time by many people.
Vendor partners and COE were critical to this success.

Sierra
EA

hardware

Start

Lather

Rinse Repeat

16
LLNL-PRES-813866

§ Flang/F18 is likely to help with compiler availability

§ OpenMP is the only real choice for portable GPU off-load in Fortran. No mechanism
for abstraction layers.

§ Modern Fortran and features not shared with C/C++ such as shaped arrays or array
notation are especially problematic

§ Write your Fortran code as much like C as possible if you want it to perform well

§ Up-to-date proxies and tests are critical to ensuring compilers will function as desired

Fortran/OpenMP is not as well supported as C/C++ on GPUs

The Fortran community is relatively small compared to C++. We should pool effort and spread the overhead/effort.

17
LLNL-PRES-813866

Four key lessons learned from large scale workflows

§ Optimize resource allocations at the workflow level
— Consider which workflow elements benefit most from available hardware
— Allocate data generators close to corresponding data consumers

§ Use workflow management tools
— Matching the available resources to ready tasks requires dedicated management software
— Checkpointing a workflow can be harder than you think

§ Consider the memory hierarchy and data sharing tools when designing a workflow
— File I/O is not adequate to coordinate complex workflows

§ Package managers and continuous integration can help ensure the reproducibility of a
workflow

Complex workflows including machine learning, and real-time
analytics or visualization are placing new demands on Sierra

18
LLNL-PRES-813866

§ Codes and libraries “phased in” over
time
— Multi-year plan overlaid with hardware and

compiler availability to guide work plans

§ Work plans were intentionally
overcommitted to allow agility

§ Earliest work focused on training and
proxy apps

§ After year one – pivoted to real
applications and greater team
engagement with vendor help

Sierra Center of Excellence work plans featured built-in flexibility

19
LLNL-PRES-813866

§ Schedule activities to ensure two-way engagement
— Trying to force interactions when priorities don’t align is a recipe for failure

§ Be prepared to deviate from your plan
— Things will go wrong
— Opportunities will arise

§ Invest in collaboration and software engineering tools
— A common set of repos and communication tools will enhance productivity
— Multi-site, secure tools can be hard to find
— Avoid fragmentation of information

§ Build multidisciplinary teams
— Co-locate teams as much as possible.

Effective collaboration doesn’t happen by accident

20
LLNL-PRES-813866

§ Usual new system pains: MPI, scheduler,
compilers. Most are largely resolved

§ Tension between system stability and bleeding-edge
system software

§ Some apps/algorithms aren’t there yet
— Monte Carlo, Multi-grid setup phase

§ Proprietary tool suites don’t handle all of our use cases
— Vendor tools don’t always play nicely with HPC, scaling, MPI, etc.
— Open source tools provide choices for debuggers, performance tools, etc.

§ Interoperability of parallel models (OMP, CUDA, …), compliers,
memory handling, across libraries can be difficult

It’s not all sunshine, lollipops, and rainbows

21
LLNL-PRES-813866

RADIUSS supports an LLNL-developed open source software
stack for rapid and enduring HPC application development

Software is core infrastructure to the laboratory, similar to institutional HPC platforms and laboratory space.
Sustained software investments are core to the mission of LLNL and our continued HPC leadership.

Common Development
Policies and Tooling

"Harden" for broad
adoption

Ease developer movement
between projects

Training and
Documentation

Encourage external
adoption and
contributions

Not often a funded
activity under research or
program-specific projects

Leverage Programmatic
Investments

Programs provide base
long-term support and

development

External outreach and
community development

Integrate into LLNL
Applications

Provide path to both
advanced architectures

and software agility

Long-term support and
minor feature
development

Product
Categories

Continuous Integration, Release Management, Integrated Testing, Deployment, Outreach
Foundational

Concepts

Performance Tools
and Workflows

Build
Tools

Portable Execution
& Memory Mgmt

Data Management
and Visualization

Physics and
Math Libraries

Application CS
Infrastructure

22
LLNL-PRES-813866

§ Many codes are seeing speedups of 10x or more
— It is possible to incrementally refactor a large

production code

§ Code refactoring has reduced technical debt
— But this takes commitment

§ Increased performance is opening doors to
previously impossible science

§ Lessons learned and ecosystem improvements
blaze a trail for others to follow
— Future efforts should be easier/faster due to

improvements in supporting software

Porting to Sierra has taken years of hard work, but the results
are worth it

Livermore
Computing

Vendors

Code Teams

COE
Management

Multi-discipline, multi-talent teams
were essential to success on Sierra

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

